

SmartElex Triple-axis Magnetometer - LIS2MDL

Sense the magnetic fields that surround us with this handy triple-axis
magnetometer (compass) module. Magnetometers can sense where the strongest
magnetic force is coming from, generally used to detect magnetic north, but can
also be used for measuring magnetic fields. This sensor tends to be paired with a 6-
DoF (degree of freedom) accelerometer/gyroscope to create a 9-DoF inertial
measurement unit that can detect its orientation in real-space, thanks to Earth's
stable magnetic field. It's a great match for any of our 6-DoF IMU sensors such as
the LSM6DSOX or LSM6DS33.

We based this breakout on ST's LIS2MDL, a great general purpose magnetometer.
This compact sensor uses I2C to communicate and its very easy to use. Simply
download our library and connect the SCL pin to your I2C clock pin, and SDA pin to
your I2C data pin and upload our test program to read out magnetic field data. If
you'd like, you can also use SPI to receive data (we just happen to prefer I2C here)
This sensor can measure up to nearly +-50 gauss (49.152 gauss to be specific, +-
4952 uTesla) which is quite a bit! It also has an adjustable data rate and can take
measurements as slowly as 10Hz and as fast as 100Hz.

This adorable little magnetometer is quite capable but it is near-microscopic at
2mm square. To make things easier, we've put it on a breakout PCB along with

support circuitry to let you use this little wonder with 3.3V (Feather/Raspberry Pi)
or 5V (Arduino/ Metro328) logic levels.

Power Pins

• Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have
included a voltage regulator on board that will take 3-5VDC and safely
convert it down. To power the board, give it the same power as the logic level
of your microcontroller - e.g. for a 5V microcontroller like Arduino, use 5V

• 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like

• GND - common ground for power and logic

I2C Logic Pins

• SCL - I2C clock pin, connect to your microcontroller's I2C clock line. This pin is
level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

• SDA - I2C data pin, connect to your microcontroller's I2C data line. This pin is
level shifted so you can use 3-5V logic, and there's a 10K pullup on this pin.

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

• SCL - This is also the SPI Clock pin, it's an input to the chip
• SDA - this is also the Serial Data In / Microcontroller Out Sensor In pin, for

data sent from your processor to the LIS2MDL
• SDO - this is the Serial Data Out / Microcontroller In Sensor Out pin, for data

sent from the LIS2MDL to your processor.
• CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an

input to the chip

If you want to connect multiple LIS2MDLs to one microcontroller, have them share
the SDA, SDO and SCL pins. Then assign each one a unique CS pin.
I2C Wiring
Use this wiring if you want to connect via I2C interface:

The I2C address is 0x1E.

Arduino LIS2MDL
SCL(A5) SCL

SDA(A4) SDA
5v OR 3.3v VIN

GND GND

• Connect board VIN to Arduino 5V if you are running a 5V board Arduino
(Uno, etc.). If your board is 3V, connect to that instead.

• Connect board GND to Arduino GND
• Connect board SCL to Arduino SCL
• Connect board SDA to Arduino SDA

SPI Wiring
Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make
wiring identical on all microcontrollers, we'll begin with 'software' SPI. The
following pins should be used:

3V3

GND

SDA
A SCL

Arduino LIS2MDL
D13(SCK) SCL

D12(MISO) SDO
D11(MOSI) SDA

D10(SS) CS
5v OR 3.3v VIN

GND GND

• Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that
the microcontroller logic is based off of.

• Connect GND to common power/data ground
• Connect the SCL pin to Digital #13 but any pin can be used later
• Connect the DO pin to Digital #12 but any pin can be used later
• Connect the SDA pin to Digital #11 but any pin can be used later
• Connect the CS pin Digital #10 but any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if
you desire, or change the pins to others.

Library Installation
You can install the Adafruit LIS2MDL Library for Arduino using the Library Manager
in the Arduino IDE.
Click the Manage Libraries ... menu item, search for Adafruit LIS2MDL, and select
the Adafruit LIS2MDL library:

Load Example
Open up File -> Examples -> Adafruit LIS2MDL -> magsensor and upload to your
Arduino which has been wired up to the sensor.

Depending on whether you are using I2C or SPI, change the pin names and
comment or uncomment the following lines.

if (!lis2mdl.begin()) { // I2C mode
 //if (! lis2mdl.begin_SPI(LIS2MDL_CS)) { // hardware SPI mode
 //if (! lis2mdl.begin_SPI(LIS2MDL_CS, LIS2MDL_CLK, LIS2MDL_MISO,
LIS2MDL_MOSI)) { // soft SPI

Once you upload the code and open the Serial Monitor (Tools->Serial Monitor)
at 115200 baud, you will see the current configuration printed, followed by
magnetometer measurements, similar to this:

The sensor class in the magnetometer library reports X, Y and Z axis magnetometer
readings directly in micro-Teslas. The magsensor example code reads from the
sensor and prints the micro-Tesla readings to the Serial Monitor.

In the absence of any strong local magnetic fields, the sensor readings should
reflect the magnetic field of the earth (between 20 and 60 micro-Teslas). When the
sensor is held level, by calculating the angle of the magnetic filed with respect to
the X and Y axis, the device can be used as a compass.

Example Code

#include <Adafruit_LIS2MDL.h>

#include <Adafruit_Sensor.h>

#include <Wire.h>

https://learn.adafruit.com/assets/88084

/* Assign a unique ID to this sensor at the same time */

Adafruit_LIS2MDL lis2mdl = Adafruit_LIS2MDL(12345);

#define LIS2MDL_CLK 13

#define LIS2MDL_MISO 12

#define LIS2MDL_MOSI 11

#define LIS2MDL_CS 10

void setup(void) {

 Serial.begin(115200);

 while (!Serial)

 delay(10); // will pause Zero, Leonardo, etc until serial console opens

 Serial.println("LIS2MDL Magnetometer Test");

 Serial.println("");

 /* Enable auto-gain */

 lis2mdl.enableAutoRange(true);

 /* Initialise the sensor */

 if (!lis2mdl.begin()) { // I2C mode

 //if (! lis2mdl.begin_SPI(LIS2MDL_CS)) { // hardware SPI mode

 //if (! lis2mdl.begin_SPI(LIS2MDL_CS, LIS2MDL_CLK, LIS2MDL_MISO, LIS2MDL_MOSI)) { // soft SPI

 /* There was a problem detecting the LIS2MDL ... check your connections */

 Serial.println("Ooops, no LIS2MDL detected ... Check your wiring!");

 while (1) delay(10);

 }

 /* Display some basic information on this sensor */

 lis2mdl.printSensorDetails();

}

void loop(void) {

 /* Get a new sensor event */

 sensors_event_t event;

 lis2mdl.getEvent(&event);

 /* Display the results (magnetic vector values are in micro-Tesla (uT)) */

 Serial.print("X: ");

 Serial.print(event.magnetic.x);

 Serial.print(" ");

 Serial.print("Y: ");

 Serial.print(event.magnetic.y);

 Serial.print(" ");

 Serial.print("Z: ");

 Serial.print(event.magnetic.z);

 Serial.print(" ");

 Serial.println("uT");

 /* Note: You can also get the raw (non unified values) for */

 /* the last data sample as follows. The .getEvent call populates */

 /* the raw values used below. */

 // Serial.print("X Raw: "); Serial.print(lis2mdl.raw.x); Serial.print(" ");

 // Serial.print("Y Raw: "); Serial.print(lis2mdl.raw.y); Serial.print(" ");

 // Serial.print("Z Raw: "); Serial.print(lis2mdl.raw.z); Serial.println("");

 /* Delay before the next sample */

 delay(100);

}

